Radioactive labeling of HPMA-based polymeric systems with fluorine-18 for
 \textit{in vivo} imaging and evaluation by positron emission tomography (PET)

Dorothea Moderegger1, Mareli Allmeroth2, Rudolf Zentel2, Frank Roesch1

1Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany;
2Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany

Introduction: During the last decades polymer therapeutics became more and more an emerging field of interest.1 An example which has already been intensively studied in clinical trials is the biocompatible polymeric backbone N-(2-hydroxypropyl)-methacrylamide (HPMA).2 Nevertheless, detailed knowledge about the biodistribution of polymeric drug-delivery systems in living organisms is still lacking. Especially information about the tumor accumulation \textit{in vivo} due to the enhanced permeability and retention effect are of major interest. Here, positron emission tomography (PET) as non-invasive, molecular whole body imaging technique offers a great opportunity to visualize the \textit{in vivo} behavior of radioactively labeled polymeric structures.

Experimental: Well defined HPMA-based random copolymers of different molecular weights (M$_w$=12 kDa and 77 kDa) synthesized via the RAFT polymerization technique3 were labeled with the positron emitting isotope fluorine-18 using the secondary labeling synthon 2-[18]F-fluoroethyl-1-tosylate ([18]FFETos). For labeling purposes, the polymeric precursors were functionalized with ~ 4\% tyramine moieties thus offering a reactive site for the prosthetic labeling procedure using [18]FFETos. The radioactive coupling step was performed using a solution of 3 mg polymer, 1 \textmu L 5N NaOH and [18]FFETos in 1 mL of DMSO (figure 1). The clear solution was kept at 120 °C for 15 min. The reaction mixture was purified using size exclusion chromatography (HiTrap Desalting Column, Sephadex G-25 Superfine, column volume 5 mL; flow: 1 mL/min physiological saline) leading to a pure solution of the 18F-labeled polymer. For kinetic PET studies, the animals (tumor bearing Copenhagen rats, R3327-AT1 dunning prostate carcinoma) were anaesthetized with pentobarbital and a catheter was inserted into the left jugular vein for radiotracer application. Listmode acquisition was started with the injection of 25-35 MBq 18F-labeled polymer. For kinetic PET studies, the animals (tumor bearing Copenhagen rats, R3327-AT1 dunning prostate carcinoma) were anaesthetized with pentobarbital and a catheter was inserted into the left jugular vein for radiotracer application. Listmode acquisition was started with the injection of 25-35 MBq 18F-labeled polymer.

Expectedly, analysis of urine probes taken after experiments clearly showed higher renal clearance of the lower MW polymer (69\% ID/g) compared to the higher MW polymer (4\% ID/g). These findings confirm the known renal excretion threshold for HPMA copolymers of 40 kDa.4

References

Acknowledgement

This work was financially supported by SAMT.

Results: To understand how the molecular weight affects the tumor distribution, different HPMA-based polymeric systems were labeled successfully and evaluated \textit{in vivo} using \textmu PET imaging. The PET studies with tumor bearing rats showed relative activities compared to reference tissue (testes) of 250\% for the higher MW polymer (77 kDa) and 200\% for lower MW polymer (12 kDa). Dynamic \textmu PET scans of the tumors over 60-120 min p.i. are shown in figure 2 (sagittal cross sections of the tumor tissue).

Figure 1. Radioactive labeling of polymers using [18]FFETos.

Figure 2. Dynamic \textmu PET scans over 60-120 min after injection of 18F-labeled HPMA-based polymeric systems: left: sagittal cross section of tumor tissue after administration of labeled polymer of MW = 12 kDa, right: 77 kDa labeled polymer.